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Chapter 6. The Schrödinger Wave Equation Formulation 
of Quantum Mechanics 

 
Notes: 

• Most of the material in this chapter is taken from Thornton and Rex, Chapter 6. 

6.1 The Schrödinger Wave Equation 
There are several formalisms available to the quantum physicists. As stated in the 
previous chapter, the two original and independent formulations were those of 
Heisenberg and Schrödinger. Heisenberg’s approach is often referred to as matrix 
mechanics, as the description of a quantum system is expressed through the time 
evolution of matrix operators for the different quantities characterizing the state of the 
system (e.g., position, momentum, angular momentum, etc.). On the other hand, 
Schrödinger’s version of quantum mechanics is based on the evolution of a wave function 
characterizing the system, a notion previously introduced in Chapter 4, as dictated by the 
Schrödinger wave equation. This is the approach we will take here. It is interesting to 
note, however, that Richard Feynman (1918-1988) introduced in the late 1940’s another 
very successful approach to quantum mechanics based on so-called path integrals or sum 
over histories. Whatever the case, all of these versions of quantum mechanics are 
equivalent and make the same predictions for the outcome of measurements. 
 
Since our analyses of quantum mechanical systems will be conducted through the 
intermediary of wave functions it would seem natural to also have at hand a 
corresponding wave equation to determine how the wave functions evolve through time 
and space. The Schrödinger wave equation, which serves this purpose, is not something 
that can be rigorously derived from first principles. Like many other instances in physics, 
it is usually postulated and tested against experiments; its successes then justify its 
acceptance. Although it is indeed the fact that the Schrödinger equation is generally 
simply postulated as a starting point in quantum mechanics, we can still provide elements 
of a derivation to make it plausible that our eventual choice for the wave equation is 
correct. In order to guide us in that regard we can postulate some conditions to be 
fulfilled by the wave equation: 
 

1. The equation should be linear and homogeneous, which is a condition met by 
waves in general. That is, if the wave functions ψ 1  and ψ 2  are solutions of the 
wave equation, then a1ψ 1 + a2ψ 2  must also be a solution, with a1  and a2  some 
constants. 

2. Because we want that knowledge of the wave function at a given instant be 
sufficient to specify it at any other later time, then the wave equation must be a 
differential equation of first order with respect to time. If, for example, the wave 
equation were of second order with respect to time (as is the wave equation in 
electromagnetism; see equation (1.24) in Chapter 1), then knowledge of the first 
time derivative of the initial wave function would also be needed. 

3. Finally, we require the wave equation to conform to Bohr’s correspondence 
principle (see Section 3.3.1 in Chapter 3). 
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Let us first consider the simplest case possible, i.e., that of a free particle of mass m , 
where we know that the following classical relation must exist between the energy and 
momentum 
 

 E = p2

2m
.   (6.1) 

 
In accordance with the material covered in Chapter 4, we express the particle’s wave 
function with the Fourier transform 
 
 

 
ψ x,t( ) = A p( )e j px−Et( )  dp∫ ,  (6.2) 

 
limiting ourselves to a one-dimensional problem, for simplicity. We also made a change 
of variables in order to have the energy and momentum appear in the wave function, 
which is straightforward from  E = ω  and  p = k  (see equation (4.9) in Chapter 4). Let 
us now calculate the time and spatial derivatives of the wave function 
 

 

 

∂
∂t
ψ x,t( ) = ∂

∂t
A p( )e j px−Et( )  dp∫

= − j


E A p( )e j px−Et( )  dp∫ ,
  (6.3) 

 
and 
 

 

 

∂
∂x

ψ x,t( ) = ∂
∂x

A p( )e j px−Et( )  dp∫
= j


pA p( )e j px−Et( )  dp∫ .
 (6.4) 

  
From the last equation we also have 
 

 

 

∂2

∂x2
ψ x,t( ) = ∂2

∂x2
A p( )e j px−Et( )  dp∫

= − 1
2

p2A p( )e j px−Et( )  dp∫ .
 (6.5) 

 
Slightly rearranging and combining equations (6.3) and (6.5) then yield 
 

 

 

j ∂
∂t

+ 
2

2m
∂2

∂x2
⎛
⎝⎜

⎞
⎠⎟
ψ x,t( ) = E − p2

2m
⎛
⎝⎜

⎞
⎠⎟
A p( )e j px−Et( )  dp∫

= 0,
 (6.6) 
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where the second line follows from equation (6.1). We are then left with  
 

 
 
j ∂

∂t
ψ x,t( ) = − 

2

2m
∂2

∂x2
ψ x,t( ),   (6.7) 

 
which can easily be shown to verify our three earlier conditions. We therefore postulate 
that equation (6.7) is the Schrödinger wave equation for a free particle. 
 
Of course, not all particles are free… Indeed, a more general equation for the classical 
energy of a particle, or a system of particles, is 
 

 E = p2

2m
+V x,t( ),  (6.8) 

 
where V x,t( )  is the potential energy, which we assume to be a function of the position 
and time. We need to find a way to incorporate the potential energy in our previous 
analysis. This could be problematic as V  is not a function of the momentum and cannot 
be easily included in the integrand like previously p  and p2  were in equations (6.4) and 
(6.5). We can, however, make the approximation that the spatial extent of the wave 
function ψ x,t( )  is much smaller than the extent over which V x,t( )  varies significantly. 
This is not an unreasonable assumption if we consider the fact that, according to de 
Broglie’s idea of matter waves, the size of the wave function should more or less 
correspond to that of the (classical) particle associated to it. One could consider the 
electron of a hydrogen atom as an example; this assumption is certainly well verified in 
this case. We therefore approximate V x,t( )  as being constant over the spatial extent of 
ψ x,t( ) , and we can thus write 
 

 

 

V x,t( )ψ x,t( ) =V x,t( ) A p( )e j px−Et( )  dp∫
≈ V x,t( )A p( )e j px−Et( )  dp∫ .

  (6.9) 

 
We can then generalize equation (6.6) to 
 

 

 

j ∂
∂t

+ 
2

2m
∂2

∂x2
−V x,t( )⎡

⎣
⎢

⎤

⎦
⎥ψ x,t( ) ≈ E − p2

2m
−V x,t( )⎡

⎣
⎢

⎤

⎦
⎥A p( )e j px−Et( )  dp∫

≈ 0,
  (6.10) 

 
or alternatively 
 

 
 
j ∂

∂t
ψ x,t( ) = − 

2

2m
∂2

∂x2
+V x,t( )⎡

⎣
⎢

⎤

⎦
⎥ψ x,t( ).   (6.11) 

 



 

 -       -  104 

This equation is readily generalized to the three-dimensional case by implementing the 
following replacements 
 

 
x→ r

∂2

∂x2
→ ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂y2
= ∇2   (6.12) 

 
(remember that ∇2 = ∇⋅∇ ), which yield 
 

 
 
j ∂

∂t
ψ r,t( ) = − 

2

2m
∇2 +V r,t( )⎡

⎣
⎢

⎤

⎦
⎥ψ r,t( ).   (6.13) 

 
This is the (non-relativistic) time-dependent Schrödinger wave equation for a particle 
subjected to a potential V r,t( ) .  
 
It is interesting and important to note that according to equations (6.3) and (6.4) we can 
make the following correspondence between the classical and quantum mechanical 
representations of energy and linear momentum 
 

 

 

E↔ j ∂
∂t

p↔− j∇.
  (6.14) 

 
We further preserve the interpretation of the wave function as providing a probability 
density through the square of its norm, and the constraint on it being normalized over all 
space 
 

 
P r,t( )d 3r = ψ r,t( ) 2 d 3r

ψ r,t( ) 2 d 3r
−∞

∞

∫ = 1,
  (6.15) 

 
but we also add the following properties 
 

1. It must be finite everywhere in space and through time, in order to yield sensible 
predictions on probabilities. 

2. It must be single-valued, in order to be physically unambiguous. 
3. Its value ψ r,t( )  and spatial derivative ∇ψ r,t( )  must be continuous whenever 

the potential V r,t( )  is finite. It is not surprising that the spatial derivative must be 
specified since the Schrödinger equation contains the second-order spatial 
derivative of the wave function. 

4. Finally, the wave function must tend to zero as r = r  goes to infinity, i.e., 
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 lim
r→∞

ψ r,t( ) = 0.  (6.16) 

 
Exercises 
 
1. Determine if (a)  ψ x,t( ) = 2−1 cos kx −ωt( )  and (b)  ψ x,t( ) = ℓ−1 2e j kx−ωt( )  are viable 
solutions for the time-dependent Schrödinger equation when  0 ≤ x ≤  .  
 
Solution. 
 
(a) We first calculate 
 

 

 

∂
∂t
ψ x,t( ) = 2


ω sin kx −ωt( )

∂
∂x

ψ x,t( ) = − 2

k sin kx −ωt( )

∂2

∂x2
ψ x,t( ) = − 2


k2 cos kx −ωt( )

= −k2ψ x,t( ),

  (6.17) 

 
 
and from equation (6.13) 
 

 
 
j ⋅ 2


ω sin kx −ωt( ) ≠ 

2k2

2m
+V x,t( )⎡

⎣
⎢

⎤

⎦
⎥ ⋅

2

cos kx −ωt( ).   (6.18) 

 
The function  ψ x,t( ) = 2−1 cos kx −ωt( )  is therefore not a viable solution for the time-
dependent Schrödinger equation. 
 
(b) We again calculate the derivatives 
 

 

 

∂
∂t
ψ x,t( ) = − jω


e j kx−ωt( )

= − jωψ x,t( )
∂
∂x

ψ x,t( ) = jk

e j kx−ωt( )

∂2

∂x2
ψ x,t( ) = − k2


e j kx−ωt( )

= −k2ψ x,t( ),

  (6.19) 

  
which when inserted in the time-dependent Schrödinger equation yield 
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ωψ x,t( ) = 

2k2

2m
+V x,t( )⎡

⎣
⎢

⎤

⎦
⎥ψ x,t( ).   (6.20) 

 
If we now use  E = ω  and  p = k  for the energy and linear momentum, then we find 
that equation (6.20) verifies that E = p2 2m +V , which is correct. Also, we find that 
 

 

 

ψ x,t( ) 2 dx
0

ℓ

∫ = 1
ℓ

e j kx−ωt( )e− j kx−ωt( ) dx
0

ℓ

∫
= 1
ℓ

dx
0

ℓ

∫
= 1,

  (6.21) 

  
and this function is properly normalized. Since it further verifies all other needed 
properties for a wave function, we conclude that it is a solution of the time-dependent 
Schrödinger equation. 

6.1.1 Separation of Variables and the Time-independent Schrödinger 
Equation   

It is often the case in physics that functions of several variables that are solutions to 
differential equations can be separated in a product of one-variable functions. For 
example, let us assume that the wave function ψ x,t( )  is such that 
 
 ψ x,t( ) =ϕ x( ) f t( ).  (6.22) 
 
Insertion in the time-dependent Schrödinger equation (6.11) for a conservative quantum 
mechanical system, when the potential energy is not a function of time (i.e., V =V x( ) ), 
yields 
 

 

 

j ∂
∂t

ϕ x( ) f t( )⎡⎣ ⎤⎦ =
−2

2m
∂2

∂x2
+V x( )⎡

⎣
⎢

⎤

⎦
⎥ϕ x( ) f t( )

jϕ x( ) d
dt
f t( ) = f t( ) −2

2m
d 2

dx2
+V x( )⎡

⎣
⎢

⎤

⎦
⎥ϕ x( ).

  (6.23) 

    
Dividing both sides of the last equation by ϕ x( ) f t( )  results in 
 

 
 
j 1
f t( )

d
dt
f t( ) = −2

2m
1

ϕ x( )
d 2

dx2
ϕ x( ) +V x( ).   (6.24) 
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Since both sides of the equality sign are functions of only one variable, i.e., a function of 
time on the left and position on the right, then it must be that they are equal to a constant, 
which we denote by E . Concentrating on the left side, we have that 
 

 
 
j 1
f t( )

d
dt
f t( ) = E,   (6.25) 

 
or  
 

 
 

df t( )
f t( ) = − j E


dt.   (6.26) 

  
Integrating on both sides yields 
 

 
 
ln f t( ) = − j Et

!
+C,   (6.27) 

 
with C  a constant of integration. Equation (6.27) can then easily be transformed to 
 
  f t( ) = Ae− jEt  ,   (6.28) 
 
with again a constant A = eC . We note that we also have from equation (6.24) 
 

 
 
E = −2

2m
1

ϕ x( )
d 2

dx2
ϕ x( ) +V x( ),   (6.29) 

 
which, from the second of equations (6.14) allows us to establish that E  is indeed the 
energy of the system, hence our notation.  
 
Combining equations (6.22), (6.28), and (6.29) we find that for a conservative quantum 
mechanical system (generalizing to three dimensions) 
 
  ψ r,t( ) =ϕ r( )e− jEt    (6.30) 
 
is a solution to the time-dependent Schrödinger equation (note that we have redefined  
ϕ r( )  such that it now includes the constant A ), and the equation for which ϕ r( )  is a 
solution is  
 

 
 

−2

2m
∇2 +V r( )⎡

⎣
⎢

⎤

⎦
⎥ϕ r( ) = Eϕ r( ),   (6.31) 

 
the so-called time-independent Schrödinger wave equation. 
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Exercises 
 
2. What mathematical form does the one-dimensional wave function of a free particle 
take (i.e., set V x( ) = 0  in equation (6.31))? 
 
Solution. 
 
The time-independent Schrödinger equation is in this case 
 

 
 

−2

2m
d 2

dx2
ϕ x( ) = Eϕ x( ),   (6.32) 

 
or 
 

 

 

d 2

dx2
ϕ x( ) = − 2mE

2
ϕ x( )

= − p
2

2
ϕ x( ).

  (6.33) 

 
This is a differential equation that is readily solved, yielding 
 
  ϕ x( ) = Aej px  ,   (6.34) 
 
with A  a constant that will ensure the normalization of the wave function. For example, 
if V x( ) = 0  only over a range of length   , then  A = −1 2  since we have 
 

 

 

ϕ x( ) 2 dx
0



∫ = 1

e jpx  ⋅ 1


e− jpx  dx

0



∫
= 1


dx
0



∫
= 1.

  (6.35) 

 
Please note that the functions  cos px ( )  and  sin px ( )  are also solutions. Although 
they are not allowed when ωt  is part of their argument (see Exercise 1), they can be 
viable solutions for the spatial part of the wave function.   

6.2  Expectation Values 
We have previously established the fact that, when considering a particle, the square of 
the norm of its wave function ψ x,t( ) 2  yields the probability density of finding that 
particle at position x  for a measurement effected at time t . It follows that we could use 
the wave function to calculate the expectation or mean value for the particle’s position 
through 
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 x = xψ x,t( ) 2 dx

−∞

∞

∫ .   (6.36) 

 
In the same manner, we could calculate the expectation value for the square of the 
position with 
 
 x2 = x2 ψ x,t( ) 2 dx

−∞

∞

∫ ,   (6.37) 

 
etc. Although these particular equations are perfectly adequate, it is more prudent in 
quantum mechanics to generally write such expectation values in the following manner 
 
 x = ψ ∗ x,t( )xψ x,t( )dx

−∞

∞

∫ .   (6.38) 

 
Evidently equations (6.36) and (6.38) are equal for x  (ψ x,t( ) 2 =ψ ∗ x,t( )ψ x,t( ) ), but 
care must be taken when calculating the expectation value of other physical observables. 
For example, what would the expectation value for the energy E  be? Before answering 

this question we should ask ourselves what representation does the energy operator1 Ê  
take when acting on the wave function ψ x,t( )? We know from the discussion leading to 
derivation of the time-dependent Schrödinger equation that, from the first of equations 
(6.14), 
 

 
 
Ê = j ∂

∂t
  (6.39) 

 
since from equation (6.3) 
 

 
 
Êψ x,t( ) = j ∂

∂t
ψ x,t( ).   (6.40) 

 
Because the energy operator modifies the wave function through the action of a time 
derivative, unlike x  that leaves it unchanged, we cannot use a relation similar to equation 
(6.36) to calculate its mean value. We rather write 
 

 

 

E = ψ ∗ x,t( ) Êψ x,t( )dx
−∞

∞

∫
= j ψ ∗ x,t( ) ∂

∂t
ψ x,t( )dx

−∞

∞

∫ .
  (6.41) 

 
                                                
1 From now on, we will associate an operator to any physical observables that can act on 
the wave function and denote it with a “caret” when it is not only a function of x  (or r  in 
three dimensions). 
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For example, let us take the case of a conservative system where 
 
  ψ x,t( ) =ϕ x( )e− jEt  .   (6.42) 
 
Equation (6.41) then yields 
 

 

 

E = j ϕ∗ x( )e jEt  ∂
∂t
ϕ x( )e− jEt  dx

−∞

∞

∫
= j ϕ∗ x( )ϕ x( )e jEt  ∂

∂t
e− jEt  dx

−∞

∞

∫
= j ϕ x( ) 2 e jEt  − j E


⎛
⎝⎜

⎞
⎠⎟ e

− jEt  dx
−∞

∞

∫
= E ϕ x( ) 2 dx

−∞

∞

∫
= E,

  (6.43) 

  
which was expected since this energy is explicitly defined in the wave function. A simple 
calculation using an equation similar to (6.36) would have given a zero value for the 
mean energy, which is clearly erroneous. 
 
Likewise, the expectation value of the linear momentum is given by 
 

 

 

px = ψ ∗ x,t( ) p̂xψ x,t( )dx
−∞

∞

∫
= − j ψ ∗ x,t( ) ∂

∂x
ψ x,t( )dx

−∞

∞

∫ ,
  (6.44) 

 
where we used 
 

 
 
p̂x = − j ∂

∂x
  (6.45) 

 
from the last of equations (6.14). In general, the expected value for a physical observable 
Q  (with an associated operator Q̂ ) is 
 
 Q = ψ ∗ x,t( )Q̂ψ x,t( )dx

−∞

∞

∫ .   (6.46) 

 
Exercises 
 
3. The Infinite Square-well Potential – The Particle in a Box Revisited   
 
In an example in Chapter 4 we postulated that a quantum mechanical particle was 
confined in the interior of a one-dimensional box. We can relate this to the time-
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independent Schrödinger equation by considering a situation where a particle is subjected 
to an infinite potential everywhere except in a spatial interval where the particle is free. 
That is, the potential is mathematically defined with 
 

 
 
V x( ) = ∞, for x ≤ 0 and x ≥ 

0, for 0 < x < .
⎧
⎨
⎪

⎩⎪
  (6.47) 

 
Our goal is then to solve the time-independent Schrödinger equation in the two regions 
and ensure that the two solutions are consistent with one another. Let us start with the 
region where V x( ) = ∞ . In this case, the Schrödinger equation can be simplified with 
 

 

 

Eϕ x( ) = −2

2m
d 2

dx2
+V x( )⎡

⎣
⎢

⎤

⎦
⎥ϕ x( )

=V x( )ϕ x( ),
  (6.48) 

   
for x ≤ 0  and  x ≥  . But since we require the energy of the system E  to be finite, in 
order to be physically meaningful, while V x( ) = ∞ , then it must be that  
 
 

 
ϕ x( ) = 0, for x ≤ 0 and x ≥ .   (6.49) 

 
We then find that, as in the case of the particle in a box, the particle is confined to evolve 
within the region  0 < x <  . Within that region the particle is free and the Schrödinger 
equation previously studied with equation (6.32) and solved to yield the more general 
wave function 
 

 
 
ϕ x( ) = Acos px


⎛
⎝⎜

⎞
⎠⎟ + Bsin px


⎛
⎝⎜

⎞
⎠⎟ , for 0 < x < ,   (6.50) 

 
with A  and B  some constants. However, we are also constrained by equation (6.49), 
which implies that A = 0  (because cos 0( ) = 1 ) and 
 

 
 

p


= nπ ,   (6.51) 

 
with  n = 1,  2, 3, …  This is exactly the same solution we found for the particle in a box in 
Section 4.5 of Chapter 4. We then found that the admissible solutions are 
 

 

 

ϕn x( ) =
2


sin nπ x


⎛
⎝⎜

⎞
⎠⎟ , for 0 < x < 

0, elsewhere,

⎧

⎨
⎪

⎩
⎪

  (6.52) 
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with the associated energies  
 

 
 
En = n

2 π 22

2m2
,   (6.53) 

 
for  n = 1,  2, 3, …  It can be verified that the wave functions (6.52) are normalized when 
the square of their respective norm are integrated over all space. 
 
We can now calculate the expectation values for x , p , and p2  for any wave function 
ϕn x( ) . The calculations for x  give 
 

 

 

x = 2


xsin2 nπ x


⎛
⎝⎜

⎞
⎠⎟ dx0



∫

= 1


x 1− cos 2nπ x


⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dx

0



∫

= 1


x2

2 0



− x
2nπ

sin 2nπ x


⎛
⎝⎜

⎞
⎠⎟
0



− 
2nπ

sin 2nπ x


⎛
⎝⎜

⎞
⎠⎟ dx0



∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= 1

2

2
− 0 + 

2nπ
⎛
⎝⎜

⎞
⎠⎟
2

cos 2nπ x


⎛
⎝⎜

⎞
⎠⎟
0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= 
2
,

  (6.54) 

 
where we integrated by parts with u = x  and  dv = cos 2nπ x ( )  to go from the second to 
the third equation. For p  we have (please note where the momentum operator is 
located) 
 

 

 

p = 2


sin nπ x


⎛
⎝⎜

⎞
⎠⎟ − j d

dx
⎛
⎝⎜

⎞
⎠⎟ sin

nπ x


⎛
⎝⎜

⎞
⎠⎟ dx0



∫

= − 2 j


nπ

sin nπ x


⎛
⎝⎜

⎞
⎠⎟ cos

nπ x


⎛
⎝⎜

⎞
⎠⎟ dx0



∫

= − jnπ
2

sin 2nπ x


⎛
⎝⎜

⎞
⎠⎟ dx0



∫
= 0.

  (6.55) 

 
We thus find that, although the mean position of the particle is   2 , its linear momentum 
is zero. This lends itself to the picture of a particle going back and forth within the box. 
On the other hand, we also have from the last of equations (6.55) 
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  (6.56) 

       
This equation is consistent with, and come have been guessed from, equation (6.53) for 
the energy since pn

2 = 2mEn  for a free particle.  

6.3 Measurement and Commutators 
Whenever a measurement is made on a quantum system, say, to determine its energy, the 
result must yield an energy level associated with one of the stationary states. For 
example, in the preceding problem of the infinite square-well potential the energy 
measured would be one of the different values En  of equation (6.53) with the probability 
associated of having the function ϕn . As we saw in Exercise 7 at the end of Chapter 4, if 
the total wave function is given by 
 

 ψ x( ) = 1
2

ϕm x( ) +ϕn x( )⎡⎣ ⎤⎦,   (6.57) 

 
then the probability of funding Em  or En  is 1 2( )2 = 0.5  for each, and zero for any 

other energy. The same would be true if we measured the momentum p .  
 
Measurement is a fairly complex, and not completely understood, process in quantum 
mechanics, but it is directly related to the application of the operator associated to the 
physical observable we intend to measure on the wave function of the system. As we just 
studied, measuring the expected value of the linear momentum when the system is in a 
given state n  can be expressed mathematically with 
 
 p = ϕn

∗ x( ) p̂ϕn x( )dx
−∞

∞

∫ ,   (6.58) 

 
where we clearly see that the operator p̂  for the linear momentum is acting on the wave 
function ϕn x( ) .  
 
Let us now suppose that our quantum system is composed of a single particle, on which 
we first measure the momentum and then the position. The expected value for this 
measuring sequence is then 
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 xp = ϕn

∗ x( )xp̂ϕn x( )dx
−∞

∞

∫ .  (6.59) 

 
This raises an important question. We saw, when discussing Young’s double-slit 
experiment, that attempting to measure through which slit an electron went destroyed the 
interference pattern that would otherwise be measured. We are then justified to ask if 
measuring the momentum and then the position would yield the same result as measuring 
the position and then the momentum? That is, if the measuring process is known to alter a 
quantum mechanical system, then wouldn’t the order of measurements matter? We can 
answer these questions by considering the following expectation value 
 

 

 

xp − px = ϕn
∗ x( ) xp̂ − p̂x( )ϕn x( )dx

−∞

∞

∫
= − j ϕn

∗ x( )x d
dx

ϕn x( )dx
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dx
xϕn x( )⎡⎣ ⎤⎦dx−∞

∞

∫⎧
⎨
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⎫
⎬
⎭

= − j ϕn
∗ x( )x d

dx
ϕn x( )dx

−∞

∞

∫⎧⎨⎩
− ϕn

∗ x( )ϕn x( )dx
−∞

∞

∫ − ϕn
∗ x( )x d

dx
ϕn x( )dx

−∞

∞

∫ ⎫
⎬
⎭

= j ϕn x( ) 2 dx
−∞

∞

∫
= j.

  (6.60) 

 
It thus becomes apparent that the order of the measurements is of paramount importance 
in quantum mechanics, since xp − px ≠ 0 . This result is entirely general and can be 
shown to be at the root of the Heisenberg inequality. The difference between such 
inverted sequences of measurements is so important in quantum mechanics that the 
following fundamental quantity is introduced for two operators â  and b̂   
 
 â, b̂⎡⎣ ⎤⎦ ≡ âb̂ − b̂â.   (6.61) 

 
The left-hand side of equation (6.61) is referred to the commutator of â  and b̂ . For the 
position and momentum operator we have 
 
  x, p̂[ ] = j1̂,   (6.62) 
 
where 1̂  is the unit operator (like a unit matrix). It follows that we can rewrite equation 
(6.60) as 
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xp − px = ϕn
∗ x( ) x, p̂[ ]ϕn x( )dx

−∞

∞

∫
= j ϕn

∗ x( )1̂ϕn x( )dx
−∞

∞

∫
= j ϕn

∗ x( )ϕn x( )dx
−∞

∞

∫
= j.

  (6.63) 

 
It is important to note that not all commutators equal  j . For example, for a system 
exhibiting more than one dimension we have 
 
 x, p̂y⎡⎣ ⎤⎦ = y, p̂z⎡⎣ ⎤⎦ = 0,   (6.64) 
 
etc.  

6.4 Quantum Tunneling 
Let us now consider the case of a particle of energy E  incident on a potential barrier of 
level V0  over the region 0 < x < L , as shown in Figure 1. The particle is free in Regions I 
and III, and will have solutions 
 

 
ϕI x( ) = AejkIx + Be− jkIx

ϕIII x( ) = FejkIx +Ge− jkIx ,
  (6.65) 

 
where 
 

Figure 1 – A particle of energy  incident 
on a potential barrier of level  over the 
region . Both cases  and 

 are possible. 
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kI =

2mE


.   (6.66) 

 
Please note that the first terms on the right-hand side of both of equations (6.65) with the 
positive exponent are for propagation in the positive x  direction (since the total wave 
function is of the type ϕI x( )e− jωt ). These are thus for the incident and transmitted waves 
in Regions I and III, respectively. It follows that the other two terms on the right-hand 
side are for propagation in the negative x  direction, and therefore imply reflected waves. 
It is clear that it must be that G = 0  since there is nothing against which the particle could 
reflect in region III.  
 
In Region II the Schrödinger equation becomes 
 

 
 
EϕII x( ) = − 

2

2m
d 2

dx2
+V0

⎛
⎝⎜

⎞
⎠⎟
ϕII x( ),   (6.67) 

 
or 
 

 
 

d 2

dx2
ϕII x( ) + 2m

2
E −V0( )ϕII x( ) = 0,   (6.68) 

 
when 0 < x < L . The solution for equation (6.68) is similar to the previous ones with 
 
 ϕII x( ) = CejkIIx + De− jkIIx ,   (6.69) 
 
but with 
 

 
 
kII =

2m E −V0( )


.   (6.70) 

 
Since the wave function must be continuous at x = 0  and x = L  we find that 
ϕI 0( ) =ϕII 0( )  and ϕII L( ) =ϕIII L( ) . Equations (6.65) and (6.69) then imply that 
 

 
A + B = C + D

CejkIIL + De− jkIIL = FejkIL .
  (6.71) 

 
Likewise, the derivatives of the wave function must also be continuous at x = 0  and 
x = L . We therefore find that 
 

 
jkI A − B( ) = jkII C − D( )

jkII Ce
jkIIL − De− jkIIL( ) = jkIFe

jkIL .
  (6.72) 
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The solution to this problem consists in using the four equations in (6.71) and (6.72) to 
evaluate B , C , D , and F   a function of A . We will not go through the details here and 
simply state the results.      
 
Case when E >V0   

In classical mechanics, a particle going through a potential barrier when E >V0  would be 
slowed down as it passed through it but would recover its initial velocity on its far side. 
This is simply accounted by the conservation of energy: the initial speed of the particle is 
simply vI = 2E m , changing to vII = 2 E −V0( ) m  within the barrier in Region II, and 

finally recovering vIII = vI = 2E m  in Region III. We then find that a classical particle 
is transmitted with certainty from Region I to Region III. On the other hand, the quantum 
mechanical transmission coefficient obtained from equations (6.71) and (6.72) yields 
 

 

T =
F 2

A 2

= 1+
V0
2 sin2 kIIL( )
4E E −V0( )

⎡

⎣
⎢

⎤

⎦
⎥

−1

.

  (6.73) 

 
We therefore find the peculiar result that the particle is transmitted with a probability 
lower than one.       
 
Case when E <V0   

Here a classical particle could never penetrate the barrier since this would require that 
vII
2 < 0 , which is impossible. Instead the conservations of linear momentum and energy 

imply that the particle is reflected back with a speed that is approximately vI , but in the 
opposite direction. In the quantum mechanical case, however, we find from equation 
(6.70) that 
 

 

 

kII
2 =

2m E −V0( )
2

< 0,
  (6.74) 

   
and we write  kII = jκ = j 2m V0 − E( )  . The transmission coefficient becomes 
 

 T = 1+ V0
2 sinh2 κ L( )
4E V0 − E( )

⎡

⎣
⎢

⎤

⎦
⎥

−1

.   (6.75) 

 
We then find that the particle is able to tunnel through the barrier and be transmitted on 
its far side. Again this unexpected result is purely quantum mechanical.   


